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• Observe behavior,
• Probe representations,
• etc.

Benchmarks: 
knowledge-specific tests 
(w/ or w/o training data)

QA format: easy to evaluate 
(e.g., accuracy)
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Alex spilt food all over the floor and 
it made a huge mess.

What will Alex want to do next?

run around in the mess mop up the mess

less likely more likely



effects

stativecauses

no intent

drink too much
clumsy

embarrassed clean it up slip on the spill

fall over

careless

upset
get a broom

gets dirty

PersonX spills ___ 
all over the floor

X is seen as

has effect on X

X will want

X will feel

X wanted to

X needed to

Knowledge tested in SOCIAL IQA: ATOMIC
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Small commonsense benchmarks

I hung up the phone. 
What was the cause of this?

(a)The caller said goodbye to me.
(b)The caller identified himself to me.

The toddler became cranky. 
What happened as a result?

(a)Her mother put her down for a nap.
(b)Her mother fixed her hair into pigtails.

Winograd Schema 
Challenge (WSC)

273 examples

Choice of Plausible 
Alternatives (COPA)

500 dev, 500 test



Step 2: Choosing a QA benchmark size

Small scale Large scale

Creation Expert-curated Crowdsourced/automatic

Coverage Limited coverage Large coverage

Training Dev/test only Training/dev/test

Budget Expert time costs Crowdsourcing costs

Challenge: do to collect positive/negative answers?
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Challenge of collecting unlikely answers

Goal: negative answers have to be plausible but unlikely

• Automatic matching?
• Random negative sampling won’t work, too topically different

• “smart” negative sampling isn’t effective either

• Need better solution… maybe we can ask crowd workers?
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✔mop up
✔ give up and order take out
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Handwritten ✔ and ✘ Answers

Context and Question

Free Text Response

Problem: handwritten unlikely answers 
are too easy to detect 
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How to make unlikely answers robust to annotation artifacts?

SOCIAL IQA, COMMONSENSEQA:
Modified answer collection

HellaSwag & AF-lite:
Adversarial filtering of artifacts
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Handwritten Incorrect Question Switching
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different from 

correct
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Question switching answers are more 
stylistically similar to correct answers
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Adversarial Filtering (lite)

Goal: remove examples with 
exploitable artifacts or spurious 
correlations

• Use pre-trained representations

• Iteratively remove data that’s 
easiest to predict by a linear 
classifier (e.g., logistic)

• Robust examples remain

HellaSwag (Zellers et al., 2019)
AF-lite (Le Bras et al., 2019)

“Easy”
examples

Robust 
examples

Unfiltered 
examples

+

Unfiltered 
examples



Performance of models on the WikiHow portion of HellaSwag (Zellers et al., 2019) 
with different AF settings and different training models



Performance of models on the WikiHow portion of HellaSwag (Zellers et al., 2019) 
with different AF settings and different training models

Adversarial filtering 
removes examples with 
spurious correlations
=> Task becomes harder
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>20% gap to 
improve on
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Remy gave Skylar, the concierge, her account 
so that she could check into the hotel.

What will Remy want to do next?

Although Aubrey was older and stronger, 
they lost to Alex in arm wrestling. 

How would Alex feel as a result?

lose her credit card

arrive at a hotel

get the key from Skylar

ashamed

boastful

they need to practice more

how Aubrey would 
feel, not Alex

what Remy 
did before

Need more robust, 
person-centric reasoning 

Need better notion of 
causes vs. effects 
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Thanks! Questions?


